新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 带漏电感的反激式转换器平均模型

带漏电感的反激式转换器平均模型

作者:时间:2018-08-09来源:网络收藏

本文引用地址:http://www.amcfsurvey.com/article/201808/386126.htm

此表达式按图5中的参数窗口计算出一个参数并传递给受控源(花括号之间的值)。我们现在可仿真并采集一个共用图中的所有曲线。我们在图8中绘制出来,所有曲线(幅值和相位)完全重合。这是一个CCM反激式转换器从占空比输入到输出的典型响应。谐振频率有个峰值,然后等效串联电阻(ESR)rc 降至零,接下来是右半平面(RHP)相位从0开始进一步下降。

图8:从3个不同模型(包括大信号模型、基于变压器的电路和线性化版本)得到的频率响应完全重合。

考虑漏电感

在图5中给出的平均模型,对模型施加的电压是Vin。这电压在dTsw期间偏置初级电感Lp。事实上,按第一部分,考虑漏电感,电压分于漏电感和初级电感之间,形成分压器Div:

该模型的第一次升级是由Vin*Div替代Vin。第二次改变涉及占空比d。我们在第一部分已看到,占空比受漏电感磁化时间d1Tsw影响。平均模型的有效占空比需要反应这一事实,得出

d1取决于漏电感值(忽略次级端二极管压降Vf)和谷底电流Iv

为计算谷底电流,我们可回头看看图7,可看到谷底电流实际上是平均电流Ic减去初级电感纹波的一半:

纹波电流是在ton或dTsw期间在串联的Lp和lleak施加Vin带来的偏移。因而谷底电流为

峰值电流以类似方法得出,只不过这方法是Ic加上而不是减去电感纹波的一半

在钳位网络循环的电流持续d2Tsw,漏电感复位时间。这时间当然取决于lleak,但还有反射电压Vout和钳位电压Vclp的因素。从第一部分我们已确定对应的占空比为

图9代表了导通期间产生影响的各种电流。低边是电源开关电流,其上是漏电感电流。当开关关断,我们已看到电流几乎立即(忽略Clump充电时间)流入钳位网络并迅速降至0。此时,漏电感复位,次级电流达到峰值。

图9:在漏电感复位时间d2Tsw期间,电流在RCD网络循环。

因此在钳位二极管中循环的平均电流只是沿开关周期的小三角表面的平均值:

(14)

因为Ip由(12)计算,我们可在(14)建模的电流源连接一个RC网络,将得到一个平均钳位电压。在SPICE中,这电压将用于确定如(13)描述的d2。这等式中的峰值电流取决于负载电阻的输出电压。这电压取决于如第一部分所见的d1。当您运行仿真,SPICE最终解出6-未知的/6-方程的系统,有时可能无法确定正确答案。为使它覆盖到正确的结果,.NODESET报告告知使用什么“种子(seed)”将有效地引导至正确的偏置点。这种子是我们建议在它运行前进行SPICE的钳位电压。最终的大信号模型出现在图10中。附加的指令行是.NODESET V(clp) = 300 V。

现在的工作包括比较从逐周期模型到更新的平均模型的负载阶跃响应。选定几个漏电感值,1 μH, 10 μH 和30 μH。由图11、图12和图13证实,在逐周期模型和平均模型之间的一致性极佳。这些图的左边显示大尺度响应,而右边显示放大版,证实平均模型与开关模型的曲线有多吻合。小的差异出现在钳位电压,特别在直流电平。此参数预测中的任何扩散导致了最终大的差异。图14比较了在两个模型中钳位二极管阴极观察到的电压。两条曲线吻合得很好,虽然小的偏差在这案例中产生了2.5%的误差。这误差随lleak增加而加大,但对于大的lleak值,误差保持在10%以内。

图10:更新的大信号模型现在包括漏电感的影响

图11:漏电感为1-μH时的瞬态响应

图12:漏电感为10-μH时的瞬态响应

图13:漏电感为30-μH时的瞬态响应

图14:平均模型的钳位电压(在钳位二极管的阴极上)与逐周期模型非常吻合(lleak= 1 μH)。

这些试验证实,受漏电感影响的大信号模型与逐周期模型十分吻合,因此可考虑用于线性化应用。

结论

在这第二部分,我们已看到漏电感如何影响反激式转换器工作于CCM的瞬态响应。采用PWM开关模型并考虑漏电感影响,我们能建立一个模拟逐周期模型的平均模型。这有助于证实我们的方案是正确的。它为第三部分作了铺垫,在第三部分中我们将推导出转换器的小信号响应。


上一页 1 2 下一页

关键词: 控制

评论


相关推荐

技术专区

关闭