交错式PFC技术趋势及单芯片交错式PFC控制器应用
近年来,在一些对外形因数有严格要求的应用中,如纤薄型液晶电视或笔记本适配器等,一种新兴的功率因数校正(PFC)技术-交错式PFC的使用越来越多。所谓交错式PFC,是在原本单个较大功率PFC段的地方并行放置2个功率为其一半的较小功率PFC段来替代,参见图1。这两个功率较小的PFC段以180°的相移交替工作,总输入电流(IL(tot))和输出电流(ID(tot))纹波都将大幅降低。
虽然交错式PFC使用相对较多的元器件,但却拥有很多优势。例如,150 W的PFC比300 W PFC更易于设计、便于采取模块化途径、散热更好及可以扩展临界导电模式(CrM)应用范围等。另外,两个不连续导电模式(DCM) PFC看上去象一个连续导电模式(CCM) PFC,简化了电磁干扰(EMI)滤波设计,减小输出均方根(RMS)电流,从而减少损耗及发热,提高设计的可靠性。尤为值得称道的是,交错式PFC支持使用尺寸更小的元器件,从而利于纤薄设计,增强产品卖点。
图1:采用两颗NCP1601 PFC控制器实现的交错式PFC架构功能框图
图1所示的交错式PFC是一种分立式的解决方案,采用了2颗NCP1601芯片。NCP1601是一款紧凑的固定频率DCM或CrM PFC控制器,采用SOIC-8或PDIP-8封装,能够充分利用DCM及CrM这两种工作模式的优势,如DCM限制最大开关频率,CrM限制升压二极管、MOSFET及电感的最大电流,降低成本及提升电路可靠性。这2颗NCP1601 PFC控制器驱动2个PFC分支,这2个分支同步但独立工作,从而保证了DCM工作模式(零电流检测),没有CCM工作模式的风险,且在满载条件下2个分支都进入CrM工作模式。
新颖的单芯片2相交错式PFC控制器
与上述分立式交错PFC不同,NCP1631是安森美半导体新推出的一款单芯片2相交错式PFC控制器,采用SOIC-16封装,替代2颗NCP1601,驱动2个PFC支路,提供接近1的高功率因数。这器件可以实现同样的低高度设计,适合任何需要PFC的离线式应用尤其是纤薄型如平板电视,典型应用示意图如图2所示。
对于交错式PFC的2个支路而言,有两种方案来工作。其中一种是主/从方案,即主支路自由工作,而从支路以180°相移跟随主支路工作。这种方案的主要挑战是维持CrM工作(无CCM,无死区时间)。另一种方案是交互相位方案,即每个相位都恰当工作在CrM,且两个相位交互作用,设定180°相移。这种方案主要的挑战是保持恰当的相移,因为虽然维持了CrM工作,但若其中某个相位的导通时间发生扰动,则可能会让180°相移减弱。NCP1631选择的是交互相位方案,两个支路独立工作,故两个相位必然工作在频率钳位临界导电模式(FCCrM),防止了出现不需要的死区时间或CCM序列的风险。此外,NCP1631内置振荡器充当交错式时钟产生器,管理异相工作,使两个相位交互作用,并在包括启动、过流保护(OCP)或瞬态序列等所有条件下持续180°相移工作。
图2:NCP1631典型应用示意图。
NCP1631满载时工作在CrM,轻载时及接近线路过零点时工作在DCM,从而充当频率钳位(由振荡器提供)的CrM工作器,优化完整负载范围内的能效。FCCrM还缩小要电磁干扰(EMI)滤波的频率范围,不需要大尺寸电感以限制频率范围,支持使用小尺寸电感,如使用150 µH电感(PQ2620)可用于宽主电源范围的300 W PFC应用。此外,NCP1631还支持频率反走,降低轻载时的钳位频率,进一步改善轻载能效。测试显示,频率反走技术不仅提升轻载和空载时的能效。
图3:NCP1631的引脚输出及功能描述。
半导体制冷相关文章:半导体制冷原理
评论