新闻中心

EEPW首页 > 测试测量 > 设计应用 > 激光微细加工中微小曝光区温度测量系统的改进

激光微细加工中微小曝光区温度测量系统的改进

作者:时间:2013-09-02来源:网络收藏
合理假设加热基片的聚焦激光束为高斯光束,在基片表面光强分布为高斯分布,光斑半径为w,则基片表面曝光区Σ的温度场的径向分布为

T(R,W)=TmaxN(R,W)

式中,R=r/w是离束斑中心的径向距离(以光斑半径作为单位),W=αw,α为吸收系数,Tmax是吸收系数很大时(W→∞),基片表面光斑中心的温度。归一化温度场径向分布函数为

(3)取α=1/20μm,W=24μm,得W=1.2。据式(3)做出的N(R)~R关系曲线如图3所示。

由图3可看出,曝光区内的温度分布是不均匀的,具有较大的温度梯度。在进行实验时,需要测出温度场的分布。另外,实验需用最高温度区域的温度来表示加工温度。因此,需调节套筒位置,使得测量区域为最高温度区域。可以通过移动测温套筒,逐点记录温度值及对应的套筒坐标的方法来测量温度场的分布和寻找最高温度区域。但由于调节台的坐标值和检流计的电流示值要用人工方法记录成表格,测量一个点的时间较长。同时必须要测量尽量多的点才能真实反应温度场的分布。这样,即使进行一维的测量,也要花费很长时间。重要的是,要这样一段长的时间里,由入射激光功率本身的变化,整个温度场的温度都会做相应的变化,这事实上使得用这种方法测量温度场变得无法实现。而最高温度点需要在整个曝光区寻找,应在得到温度场分后才能准确获得。因此,必须另寻方法来测量温度场的分布。


图4 计算机实验装置3.系统的改进

针对系统在实际使用时遇到的困难,我们对原系统进行了改进。改进后测温系统的装置如图4所示。系统去掉了检流计,采用高精度电流放大器将探测器产生的光电流信号转换为电压信号,再经A/D转换器转为数字信号输入计算机进行计算、记录及显示。通过实验定标,可将数字量直接和温度对应。这样,不但解决了测量范围与测量精度之间的矛盾,还使得实验时读数方便、准确。温度分辨率主要决定于所选A/D转换器的位数,并不影响测量范围。实验装置中,采用集成运放OP37组成电流放大器,A/D转换器选用AD1674A。在温度为600℃时,温度分辨率达到0.2℃。

计算机控制精密电动平台带动测温套筒移动并同时记录由探测器输出的温度信号,对基片上的热斑作二维扫描得到热斑的温度分布,从而利用软件测出焦斑中心温度、热斑边界等参数。同时,利用计算机软件计算出热斑最高温度区的位置,并使测温套筒移动,对准该位置。精密电动平台的步距为1.25μm,扫描速度达20mm/s,满足我们对温度分布测量的要求。

在测量之前,同样需对系统进行定标。在得到定标数据后,利用计算机的快速计算,在对实验中的基片进行温度测量时,将从A/D转换器读出的数据字量用插值计算的方法直接转换为温度值显示在我们设计的虚拟仪器面板上。这很大程度上方便了实验中对温度的调节。

另外,我们利用计算机软件及系统对温度信号的快速记录功能,实现了对基片温度随时间变化过程的测量、记录。

4.改进后的系统在实验中的应用

我们用上述系统测量了用功率为10W的连续波10.6μm聚焦激光束照射预热温度为580K的InP时产生热斑的温度分布,电动平台移动的速度设置为0.5mm/s,结果示于图5。从图中可以看出,热斑随半径有较大的温度梯度。热斑中心温度随时间变化过程如图6所示。


图5 热斑的温度分布


图6 热斑中心温度随激光束照射时间的变化5.结束语

现有用于半导体的在实际使用过程中出现了一些需要解决的问题。首先是温度分辨率和温度测量范围不能同时满足使用要求,其次是不能进行温度分布的准确测量和最高温度点的准确定位。本文提出了一种在原有系统基础上经过改进的计算机,该系统通过软、硬件的结合,较好的解决了原有系统的这些问题。新的计算机温度测量系统在半导体的多种激光微细加工实验中将发挥重要作用。

参考文献
[1]叶玉堂.激光微细加工.第一版.电子科技大学出版社,1995
[2]叶玉堂、李忠东等.GaAs衬底的固态杂质源脉冲1.06μm激光诱导扩散.光学学报,1997,17(4)
[3]叶玉堂、李忠东等.用固态杂质源在GaAs衬底上实现的连续波CO2激光诱导Zn扩散.中国激光,1997,24(3)
[4]P.Baumgartner, W.Wegscheider, M.Bichier, etal. Single-electron fabricated by focused laser beam-induceddoping of a GaAs/AlGaAshetero structure, Appl. Phys. Lett,1997,70(16)
[5]A.Yu.Bonchik,S.G.Kijak,Z.Gotra,etal.Laser technology for submicron-dopedlayers for mation in semiconductors, Optics Laser Technology, 2001
[6]李忠东、叶玉堂.连续波激光诱导扩散区温度的不接触测量.应用科学学报,1997,15(4)(end)


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭