

Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

MSA-0186

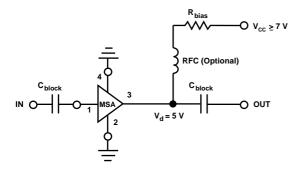
Features

- Cascadable 50 Ω Gain Block
- **3 dB Bandwidth:** DC to 0.9 GHz
- High Gain: 17.5 dB Typical at 0.5 GHz
- Unconditionally Stable (k>1)
- Surface Mount Plastic
 Package
- Tape-and-Reel Packaging Option Available^[1]

Note:

1. Refer to PACKAGING section "Tapeand-Reel Packaging for Semiconductor Devices".

Description


The MSA-0186 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using HP's 10 GHz f_T, 25 GHz f_{MAX}, silicon bipolar MMIC process which uses nitride self-alignment,

ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

Typical Biasing Configuration

MSA-0186 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]				
Device Current	40 mA				
Power Dissipation ^[2,3]	200 mW				
RF Input Power	+13dBm				
Junction Temperature	150°C				
Storage Temperature	−65 to 150°C				

Thermal Resistance ^[2,4] :						
$\theta_{\rm ic} = 115$ °C/W						

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

- 2. $T_{CASE} = 25^{\circ}C.$
- 3. Derate at 8.7 mW/°C for $T_C > 127$ °C.

4. See MEASUREMENTS section "Thermal Resistance" for more information.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions:	Units	Min.	Typ.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz f = 0.5 GHz	dB	15.5	18.5 17.5	
ΔG_P	Gain Flatness	f = 0.1 to 0.6 GHz	dB		± 0.7	
f _{3 dB}	3 dB Bandwidth		GHz		0.9	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.3:1	
VSWK	Output VSWR	f = 0.1 to 3.0 GHz			1.2:1	
NF	50Ω Noise Figure	$f = 0.5 \mathrm{GHz}$	dB		5.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	$f = 0.5 \mathrm{GHz}$	dBm		1.5	
IP ₃	Third Order Intercept Point	$f = 0.5 \mathrm{GHz}$	dBm		14.0	
tD	Group Delay	$f = 0.5 \mathrm{GHz}$	psec		200	
Vd	Device Voltage		V	4.0	5.0	6.0
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-9.0	

Note:

1. The recommended operating current range for this device is 13 to 25 mA. Typical performance as a function of current is on the following page.

Part Number Ordering Information

Part Number	No. of Devices	Container		
MSA-0186-BLK	100	Antistatic Bag		
MSA-0186-TR1	1000	7" Reel		

For more information refer to PACKAGING section, "Tape and Reel Packaging for Semiconductor Devices."

Freq.	S ₁₁		S ₂₁			\mathbf{S}_{12}			S ₂₂	
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.05	148	18.5	8.39	171	-23.0	.071	4	.08	-7
0.2	.06	124	18.3	8.22	162	-22.8	.073	9	.08	-14
0.3	.07	103	18.1	8.03	154	-22.6	.074	13	.07	-24
0.4	.08	89	17.7	7.67	146	-22.2	.078	14	.07	-31
0.5	.08	76	17.4	7.42	139	-21.9	.081	17	.06	-39
0.6	.09	66	17.0	7.06	131	-21.4	.085	21	.06	-47
0.8	.10	50	16.2	6.47	119	-20.5	.094	25	.07	-67
1.0	.10	35	15.3	5.83	107	-19.6	.105	29	.07	-89
1.5	.07	12	13.2	4.57	83	-17.7	.131	30	.08	-165
2.0	.02	-12	11.3	3.67	64	-16.1	.157	27	.08	156
2.5	.06	165	9.8	3.09	50	-14.8	.182	24	.08	134
3.0	.14	150	8.3	2.60	34	-13.9	.202	19	.09	124
3.5	.23	137	7.0	2.24	20	-13.4	.213	12	.09	117
4.0	.31	125	5.7	1.93	6	-13.0 🚜	.223	5	.09	114
5.0	.45	105	3.3	1.46	-17	-12.7	.231	-5	.09	132
model for t	this device i	s available	in the DEV	/ICE MODE	ELS section	X				
Typical Performance, $T_A = 25^{\circ}C$										
(unless otherwise noted)										
mess oth	erwise not	ea)				-				

MSA-0186 Typical Scattering Parameters ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}C$, $I_d = 17 mA$)

Typical Performance, $T_A = 25^{\circ}C$

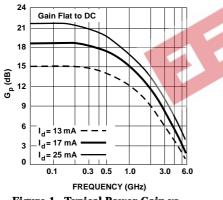


Figure 1. Typical Power Gain vs. Frequency, $T_A = 25^{\circ}C$, $I_d = 17$ mA.

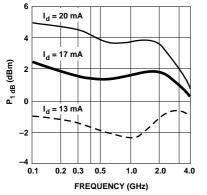


Figure 4. Output Power at 1 dB Gain **Compression vs. Frequency.**

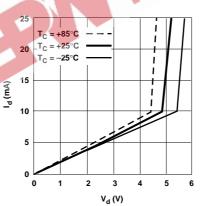


Figure 2. Device Current vs. Voltage.

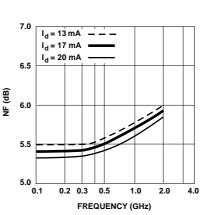


Figure 5. Noise Figure vs. Frequency.

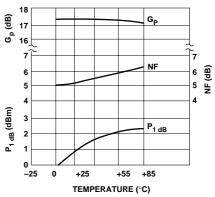
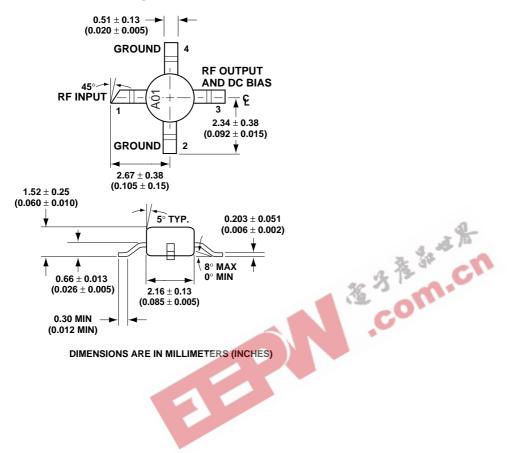



Figure 3. Output Power at 1 dB Gain **Compression, NF and Power Gain vs.** CaseTemperature, f = 0.5 GHz, I_d=17 mA.

