新闻中心

EEPW首页 > 测试测量 > 设计应用 > 基于高压电器容量试验测量系统性能的研究

基于高压电器容量试验测量系统性能的研究

作者:时间:2014-01-18来源:网络收藏

0 引言

电力行业近些年发展迅速,电能传输与配送的安全与可靠也越来越受到很高的关注,是否稳定运行也成为行业内关注的焦点,在正式入网使用前必须通过国家规定的型式试验,容量开断试验是型式试验的最重要部分,对试验数据的精确与可靠性提出了很高的要求,所以试验室的试验对于容量试验具有重要的意义。

近些年International Electrotechnical Commission(简称IEC)标准和Short-Circuit Testing Liaison(简称STL)技术导则的不断修订和完善,对容量试验的技术要求也越来越高.

试验需要测量的信号不仅数量多,而且幅值范围大,频率范围宽,记录的时间也长短不一。电压从几伏到一千多千伏,电流从几安到几百安,电流测量频率从直流到几十千赫兹,并且试验信号都不是单频而是混频信号,持续时间从几微秒到几十秒等等。高压试验同时测量的参量也很多,包括试验电压,试验电流,负载电压,分合闸线圈的电压,试品的机械行程曲线,电弧电压等等。为了满足发展的要求,机械工业产品质量检测中心研制出完全符合其要求的容量试验。并很好的满足试验标准的要求,运行良好。

1.的组成方案

1.1 测量系统的硬件组成部分

测量得到示波图的核心硬件是波形记录仪,本系统记录仪采用了当前世界上先进的LDS Genesis波形记录仪,并有匹配的测试软件(软件部分我们下部分介绍)。记录仪我们采用了16个通道1MS/s的采集模块,16bit,±1~±50V可调,模拟带宽500kHZ(-3dB)。4个通道10MS/s的采集模块,14bit,±0.02~±100V可调,模拟带宽1MHZ(-3dB)。

在电流传感器配置方面,因为测量电流频带宽,短路电流周期分量、非周期分量、频率、相角、时间常数、主回路干扰等都是影响波形的因素,在电缆充电电流和线路充电电流中的合闸涌流、合成试验时延弧干扰等等也都对电流测量的准确度产生很大影响。高压试验电流测量现在主要有分流器,带气隙的电流互感器和罗斯线圈几种,我们主要采用了带气隙的电流互感器,并参加了国际短路试验联盟组织的,国内有西高院牵头的短路电流测量比对,测量值偏差为0.4%.其测量电流的周期分量和非周期分量都很好。选用的电流互感器要满足测量的要求,根据不同的电流值,选取了几档电流互感器,变比分别为100/5、2500/5、3000/5、20000/5、100000/5(单位A)的电流互感器,直接网路试验可以测量50KA,时间常数120ms,线性度小于5%,暂态误差100ms内小于1%,精度达到1级。

在电压传感器的配置方面,高压电器试验在电压工频阶段频率比较稳定,但是在开断后的恢复阶段频率不是单一的,而是混频信号,持续的时间比较短,一般只有几微秒,需要运用2参数或者4参数法测量恢复电压的TRV等参量。在恢复电压之后有几多达几秒的工频稳态电压或者直流恢复电压。本系统选用了最新的RC-70阻容分压器来测量电压信号,阻容分压器具有频带很宽的特点,可以测量信号的频率范围从直流到500KHz信号。分压器可测量70kV电压,完全满足三相直接试验的使用,测量精度达到1级。选用的分压器可以单独测量各点得对地电压,也可以两个一对测量点与点之间的线电压,对测量的准确性有很多的帮助。

在信号传输方面,由于高压电器容量试验时一个干扰多,强电磁的环境,信号传输要抵抗这些干扰问题,本测量系统采用光纤传输信号并且与之匹配的是数字光纤隔离模块,数字光纤模块的误差达到0.5%满量程,模拟宽带20MHz(-3dB),在传输前端EMC屏蔽,单独的电池供电,电池是可更换的,简单方便,使用寿命长。数字隔离模块抗干扰能力强,可以放在复杂的环境中,包括试验小室内,采集的数据再用光纤传到试验室,进入记录仪进行显示和处理。

1.2 测量系统的软件组成部分

与采集数据记录仪匹配的是专门为高精密测量而开发的Perception软件,在整个测量的系统中,软件处理是在计算机中进行的,处于测量系统的后端,如图1所示。



测系统具有很高的应用功能,具有专门为高压电器试验而打造的数据处理平台,具备控制采集、存储数据、显示数据、调阅数据、函数编辑、报告生成等很多功能,尤其是其函数编辑功能具有高的灵活性,可根据自身的需要进行编辑。还具有扩展功能如CSI功能,可根据用户的需求进行更具有人性化的界面编辑如图2所示。在数据处理模块中具有按照标准和STL导则要求而研制的函数分析库,使用者根据不同是试验项目来编译合适的函数计算程序。STL提供了试验数据发生器(TDG)来检查测试软件的算法精度,从公布的国外试验室短路电流数据处理的平均结果来看:短路电流有效值测量不确定度≤0.4%,非对称短路电流直流分量的测量不确定度≤2%,非对称短路电流峰值测量不确定度≤0.2%.本系统采用编译的函数后采用TDG提供的波形进行验证,测试的结果是:短路电流有效值测量不确定度≤0.42%,非对称短路电流直流分量的测量不确定度≤1.86%,非对称短路电流峰值测量不确定度≤0.186%,测试结果证明,短路电流数据满足STL技术文件关于软件的技术指标。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭